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Separate scaling of the same-spin and opposite spin contributions to the second-order Møller-Plesset energy
can yield statistically improved performance for a variety of chemical problems. If only the opposite spin
contribution is scaled, it is also possible to reduce the computational complexity from fifth order to fourth
order in system size, with very little degradation of the results. However neither of these scaled MP2 energies
recovers the full MP2 result for the dispersion energy of nonoverlapping systems. This deficiency is addressed
in this work by using a distance-dependent scaling of the opposite spin correlation energy. The resulting
method is compared against the previously proposed scaled MP2 methods on a range of problems involving
both short and long-range interactions.

I. Introduction

Møller-Plesset perturbation theory1 is a popular electronic
structure theory that can approximately evaluate the correlation
energy of molecules. In particular, second-order Møller-Plesset
perturbation theory (MP2) offers the simplest and least expen-
sive wave function based treatment of electron correlation
beyond the Hartree-Fock (HF) approximation.2 MP2 has certain
advantages over the widely used density functional theory
(DFT)3 as it provides a fairly accurate description of the
important long-range dispersion interactions,4 which present-
day density functionals completely neglect.5 However, MP2 is
still plagued by several problems like high computational cost,
the need for large basis sets to obtain fairly accurate results6

and poor description of open shell systems.7

In recent years, there has been considerable focus on
addressing the high computational cost of MP2 whose bottleneck
is the fifth order scaling four-index integral transformation.8 This
led to the development of several efficient approaches that
attempt to work around this bottleneck. For example there are
local MP2 methods that define a local correlation space and
discard some or all of the nonlocal terms to obtain large
reduction in the computational effort by either using localized
orbitals9-11 or employing atomic truncations.12 Then there is
the cutoff based formulation of MP2 in the atomic orbital basis
that has shown linear scaling behavior for one-dimensional
systems with small basis sets.13,14 The “resolution-of-the-
identity” (RI)-MP2 method is an efficient and popular approach
that uses auxiliary basis expansions to avoid the computation
of the four-index integral transformation and hence achieve
significant speed-ups.15,16

It is certainly desirable to explore enhancements to the basic
MP2 method that permit increased accuracy as well as improved
computational performance. Following this theme, recently, the
idea of using separate scaling of the same-spin (SS) and
opposite-spin (OS) correlation energies was proposed by
Grimme17 and led to significant statistical improvements over

MP2 results for a range of properties.18-20 This approach is
called “spin-component scaled” (SCS) MP2. In MP2 theory,
the correlation energy can be written as

EOS andESSare the contributions of the opposite-spin (Râ) and
same-spin (RR andââ) components to the total MP2 correlation
energy. The SCS-MP2 energy is defined as

where Grimme’s recommended scaling factors arecOS ) 1.2
andcSS ) 0.3.

Following this development, we recently suggested an even
simpler variant of SCS-MP2 called “scaled opposite-spin” (SOS)
MP2.21 Motivated by the large damping of the SS part in SCS-
MP2 and also noticing that the evaluation of the SS component
energy leads to most of the observed computational complexi-
ties, we completely neglect the SS component of the correlation
energy and scale only the OS part. The proposed scaling factors
in eq 2 are nowcOS ) 1.3 andcSS ) 0. This approach was
shown to have a 2-fold advantage in keeping with the theme of
“improved accuracy and reduced scaling”. First, with only a
single parameter, we were able to largely retain the statistical
improvements obtained by the SCS-MP2 approach over a range
of properties and second, we showed without using cutoffs that
SOS-MP2 energy can be evaluated with a fourth order scaling
algorithm using a combination of auxiliary basis functions and
a Laplace transform in contrast with the conventional fifth order
scaling MP2 method.

However, one undesirable feature of both the SCS-MP2 and
SOS-MP2 methods, apart from their empirical parameter(s), is
the incorrect physical description of the long-range correlation
between two nonoverlapping systems. In this long-range regime,
if we assume that the two systems of interest are closed shell,
the SS and OS components to the inter-system correlation energy
should be exactly equal as can be readily verified. Therefore,
the appropriate scaling factor for opposite correlation alone
should approach 2. The scaling factors of SCS-MP2 and SOS-
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EMP2 ) EOS + ESS (1)

EMP2 ) cOSEOS + cSSESS (2)
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MP2 are around 1.5 and 1.3 respectively at this limit and thus
tend to significantly underestimate the MP2 correlation energy.
Hence, these theories are not going to be very accurate for
systems where long-range interactions are of critical importance.
This assumes that MP2 theory itself is accurate for long-range
dispersion interactions, which is usually (but not always) true.22

The purpose of this paper is to suggest an alternative scaled
opposite-spin technique that can get the long-range description
correct by construction while still retaining the desirable features
of SOS-MP2 at almost no extra cost. The idea is to determine
and use a correcting factor that depends on the inter-electronic
distance rather than a simple constant scaling factor. With this
intent, we define a long-range operator as follows:

This operator was previously used in the context of separation
of the Coulomb operator (1/r ) into a nonsingular but slowly
and smoothly decaying long-range piece,L̂ω(r ) and a singular
but rapidly decaying short-range part,Ŝω(r ) ) erfc(ωr )/r in
order to gain computational efficiency.23,24 For our purposes,
we would like to take advantage of the behavior of this long-
range operator that approaches 1/r asr f ∞ and define a new
“modified” two-electron operator,ĝω(r ),

with ĝ(r) ) 1/r , leading to a new set of “modified” integrals
(Ĩω),

so that the “modified” opposite-spin (MOS)-MP2 energy is now
given by

The energy denominator is defined in terms of the canonical
orbital energies of the occupied levelsi, j and virtual levelsa,
b as∆ia

jb ) (εa - εi) + (εb - εj). The variablecMOS () x2 -
1) in eq 4 is easily fixed by the requirement thatEMP2

MOS f

2EMP2
OS as r f ∞. MOS-MP2 is dependent on a single

parameterω, an optimal value for which can be determined
empirically by performing chemical tests. This is explored in
detail in section II.

In this paper, we first assess and compare MOS-MP2, in
section II, against conventional MP2, SCS-MP2, and SOS-MP2
by performing a range of chemical tests similar to those in Jung
et al..21 We have further included some examples of rare-gas
dimers and hydrogen-bonded molecules where a correct de-
scription of long-range correlation is important. In section III,
we present the “modified” fourth order scaling algorithm to
efficiently compute the MOS-MP2 energy, without exploiting
localization. Our approach uses auxiliary basis functions,
together with a Laplace approach to eliminate energy denomina-
tors and is very similar to the recently suggested SOS-MP2
algorithm. Section IV explores a chemical application of MOS-
MP2 that demonstrates the usefulness and computational
effectiveness of this method. Finally, we present some conclu-
sions.

II. Chemical Tests

All calculations reported in this paper were performed using
a developmental version of the Q-CHEM program,25 where our

standard MP2 program26 was modified to evaluate the SCS-
MP2, SOS-MP2, and MOS-MP2 energy. The objective of this
section is to evaluate MOS-MP2’s performance and compare
against the performance of conventional MP2, SCS-MP2, and
SOS-MP2 and high level correlation methods like QCISD and
QCISD(T)27 using the Dunning cc-pVTZ basis set.28 We would
also like to choose an optimal value for the parameterω based
on these chemical tests. We have used the same database of 41
reaction energies and 30 barrier heights considered in our recent
SOS-MP2 paper,21 which includes further technical details. We
have replaced the 77 atomization energies considered in ref 21
with the atomization energies calculated for the entire G2 test
set29,30 of 148 neutral molecules (MP2/6-31G* optimized
geometries).

A. Reaction Energies, Atomization Energies, and Barrier
Heights.We have evaluated the reaction energies, atomization
energies, and barrier heights via MOSMP2 over a range ofω
values. Figures 1-3 show the statistics of the rms error and
mean absolute error (MAE) generated by the various methods
with QCISD(T) energies taken as the reference for each
property, respectively. Looking at the reaction energy data
(Figure 1), we infer that MOS-MP2 (ω ) 0.3-0.6) performs
better than MP2. The least rms error is obtained by MOS-MP2
(ω ) 0.4) and this is almost as good as SCS-MP2 and slightly
better than SOS-MP2. For atomization energies, MOS-MP2
(ω ) 0.6-0.7) shows a great improvement (a reduction of∼
8-9 kcal/mol) over MP2 rms error. In particular, MOS-MP2
(ω ) 0.6) is more favorable than SCS-MP2 and very similar to
performance of SOS-MP2. Estimation of barrier heights proved
to be difficult for both SOS-MP2 and SCS-MP2 relative to MP2
but by letting ω values vary between 0.6 and 2, MOS-MP2
seems to overcome this problem! For instance, the rms error of

L̂ω(r ) )
erf(ωr )

r
(3)

ĝω(r ) ) ĝ(r ) + cMOSL̂ω(r ) (4)

Ĩ ia
jb(ω) ) ∫dr ∫dr ′φi(r )φa(r )ĝω(r - r ′)φj(r ′)φb(r ′) (5)

EMP2
MOS(ω) ) - ∑

ia

R

∑
jb

â Ĩ ia
jb(ω)Ĩ ia

jb(ω)

∆ia
jb

(6)

Figure 1. Root mean squared and mean absolute errors of the 41
reaction energies21 calculated relative to QCISD(T) with cc-pVTZ basis.

Figure 2. Root mean squared and mean absolute errors of the 148
atomization energies of G2-neutral test set calculated relative to
QCISD(T) with cc-pVTZ basis.
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MOS-MP2 (ω ) 1.5) is almost 2 kcal/mol lower than that of
conventional MP2.

The above observations suggest that the modification of the
simple SOS-MP2 idea, not only retains the advantages obtained
in SCS-MP2 and SOS-MP2, but also improves upon the
problems encountered in case of barrier heights. In fact, one
can really tune theω value used in MOS-MP2 to obtain the
best results for a particular property (similar in spirit to the
development of density functionals that are optimized for
“kinetics” via fitting to barrier heights31). This possibility will
not, however, be explored further here. Instead we seek a single
value most suitable for general-purpose use. On the basis of
the discussion above, MOS-MP2 (ω ) 0.6) seems to be a value
that consistently performs better than MP2 across the entire
database. Hereafter, we will retainω ) 0.6 as the default
parameter value for the remainder of the paper unless specified.
It is worthwhile to mention here that the parameterω determines
the distance at which the asymptotic limit ofĝω(r ) f x2‚ĝ(r )
(eq 4) is approximately reached. This can be easily measured
by plotting f(r )() 1 + cMOS × erf(ωr )) vs r . Figure 4 shows
that the limit is reached at longer distances for smallerω values.
For example, withω ) 0.6 au this limit is reached aroundr ∼
2 Å. In other words, the contribution of the modified integrals
in eq 5 to the MOS-MP2 energy (eq 6) is scaled by a factor of
2 only when the corresponding inter-electronic distance is greater
than 2 Å. This ensures that contributions from the electrons
correlating strongly over a short range (r < 2 Å) are scaled by
a factor smaller than 2 in keeping with the idea of SCS- and
SOS-MP2.

B. Interactions of Weakly Bound Dimers.Since the MOS-
MP2 method is designed to recover the MP2 result for the
dispersion energy of nonoverlapping molecules, it is particularly
relevant to investigate its performance for weak interactions like
rare-gas dimers and a few hydrogen-bonded molecules. Con-

strained geometry optimization (MP2/6-31G*) was carried out
for the water-dimer at 8 different O-O separations (between
2.4 and 5.0 Å) and for the rare-gas dimers, about 20 points
between 3 and 9 Å were considered. The interaction energies
were then computed through single-point calculations at the
MP2, SCS-MP2, SOS-MP2, and MOS-MP2 levels using the
augmented correlation-consistent polarized valenceX-ú (aug-
cc-pVXZ, X ) T, Q) basis sets of Dunning.28,32 Standard
counterpoise corrections (CP) were applied to the reported
potential energy curves to account for basis set superposition
errors (BSSE). Extrapolated results at the complete basis set
limit (CBS) was estimated by applying a simple two-point
extrapolation scheme,33 where the error in the aug-cc-pVXZ
basis is given by

Figures 5-7 show the CP corrected interaction potential curves
for Ar-Ar, Ne-Ar, and H2O-H2O dimers at CBS for the
method MP2 and its variants SCS-MP2 and SOS-MP2. Also
shown are the MOS-MP2 curves for the cases ofω ) 0.6, ∞.
Following the observations made in section I, it is apparent that
SOS-MP2 and SCS-MP2 curves underestimate the binding
energy especially close to equilibrium distance and this under-
estimation is visible until almost 6 Å separation for the rare-
gas dimer molecules, Ar-Ar and Ne-Ar. MOS-MP2 (ω ) 0.6)
on the other hand is in close agreement with the MP2 curve in
case of the rare-gas dimers. For instance, if we consider the
Ar-Ar dimer close to equilibrium distance (refer Table 1), the
SOS-MP2 interaction energy is underestimated by∼60%, while
SCS-MP2 is∼40% too low relative to MP2. By contrast MOS-

Figure 3. Root mean squared and mean absolute errors of the 30 barrier
heights21 calculated relative to QCISD(T) with cc-pVTZ basis.

Figure 4. Variation of the opposite spin scaling factor with inter-
electronic distance.

Figure 5. Counterpoise corrected potential energy curve of argon dimer
at complete basis limit.

Figure 6. Counterpoise corrected potential energy curve of argon-
neon dimer at complete basis limit.

∆EX ∝ X-3 (7)
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MP2 (ω ) 0.6) is only off by∼ 9%. A similar trend is observed
for the Ne-Ar dimer. This underestimation can prove to be a
boon for the scaled MP2 theories if conventional MP2 generally
tends to overestimate the interaction energies. However, com-
paring the regular MP2 results with those obtained from higher-
level correlation methods like CCSD(T) at CBS limit (last
column in Table 1, data collated from Cybulski et al.34) reflects
that MP2 overestimates the interaction energy in case of Ar-
Ar dimer and underestimates in case of Ne-Ar dimer. So it is
possible that the gross underestimation of SCS-MP2 and SOS-
MP2 results could deteriorate the quality of MP2 energies,
especially for nonoverlapping systems like Ne-Ar dimer. MOS-
MP2 on the other hand is able to predict MP2-like results.

For the water dimer, the underestimation of binding energy
by SCS-MP2 (∼ 0.4 kcal/mol) and SOS-MP2 (∼0.5 kcal/mol)
relative to MP2 still holds true. However, the MOS-MP2 (ω )
0.6) curve lies almost on top of the SCS-MP2 curve, unlike the
improvements seen in the rare-gas dimers. At first glance, one
might think that the reason for this odd behavior could be an
improper choice ofω value. So, if we consider the extreme
case of MOS-MP2 withω ) ∞, where the binding energy
calculated would be twice that of the binding energy contribution

of opposite-spin component of the conventional MP2 method,
we expect to overestimate the MP2 binding energy at short and
intermediate distances. The curves for MOS-MP2 (ω ) ∞) in
Figures 5-7, however, do not seem to follow this expectation.
This curve seems to coincide with the regular MP2 curve in
case of Ar-Ar dimer and lies slightly above the MP2 curve
for Ne-Ar dimer and water dimer. To understand this behavior,
we have tabulated the contributions of the opposite-spin (OS)
and same-spin components (SS) of the total MP2 correlation
energy toward the binding energy in Table 2 for Ar-Ar dimer,
Ne-Ar dimer, and water dimer at various dimer distances using
the cc-pVTZ basis. We have also included some more hydrogen-
bonded molecules like CH3OH-H2O, HCN-HF, HF-HF,
NH3-H2O, and NH3-NH3 at their equilibrium geometry,
obtained from MP2/6-31G* geometry optimization. We have
also included the coupled-cluster singles and doubles (CCSD)35

correlation energy breakdown into SS and OS components for
comparison purposes. The CCSD correlation energies are
smaller in magnitude compared to MP2 correlation energies due
the well-known fact that MP2 tends to overestimate the doubles
contribution while CCSD partly includes the effect of quadruple
excitations through “disconnected”T2

2 contributions. Looking
at Table 2, the first observation is that for the rare-gas dimers,
the contributions of the SS and OS toward the MP2 binding
energy are very similar at distances close to and around the
equilibrium distance, with and without CP correction. In other
words, the MP2 binding energy is roughly two times that of
the OS contribution. A similar trend is also observed with the
CCSD energies. This explains why the MOS-MP2 (ω ) ∞)
almost coincided with the regular MP2 curve and emphasizes
that exclusion (SOS-MP2) or damping (SCS-MP2) of the SS
component results in underestimation of the total binding energy.

In case of the hydrogen-bonded molecules, the non-CP
corrected binding energies are very similar, within 0.2 kcal/
mol for both SS and OS close to the equilibrium dimer
separation, except for the dimers where HF is involved.
However, with the inclusion of CP correction for BSSE, the
SS component seems to contribute∼0.4-0.9 kcal/mol more

TABLE 1: Comparison of the Interaction Energy of Ar -Ar, Ne-Ar, and Water Dimer at a Specific Geometry Close to the
Minimum in the Respective Potential Energy Curves

basis MP2 SCS-MP2 SOS-MP2 MOS-MP2a CCSD(T)

Ar-Arb

without CPc aug-cc-pVTZ -110.68 -74.93 -57.06 -102.86
aug-cc-pVQZ -112.23 -73.33 -53.88 -103.86

with CPc aug-cc-pVTZ -84.34 -45.93 -26.72 -77.21 -69.30d

aug-cc-pVQZ -97.60 -56.80 -36.40 -89.48 -82.97d

extrapolated -108.18 -65.64 -44.37 -99.34 -96.86e

-99.54f

Ne-Arb

without CPc aug-cc-pVTZ -44.83 -31.63 -25.03 -41.78
aug-cc-pVQZ -43.95 -29.07 -21.63 -40.64

with CPc aug-cc-pVTZ -24.83 -9.73 -2.19 -22.47 -28.64d

aug-cc-pVQZ -31.78 -15.45 -7.28 -28.90 -37.28d

extrapolated -37.01 -19.78 -11.16 -33.74 -45.17e

-46.98f

H2O-H2Og

without CPc aug-cc-pVTZ -5.04 -4.72 -4.56 -4.69 -5.15h

aug-cc-pVQZ -4.94 -4.61 -4.44 -4.59 -5.05h

with CPc aug-cc-pVTZ -4.63 -4.26 -4.08 -4.30 -4.68h

aug-cc-pVQZ -4.74 -4.38 -4.20 -4.40 -4.86h

extrapolated -4.81 -4.45 -4.27 -4.46 -4.96h

-4.85i

a w ) 0.6. b Energies in cm-1; rAr-Ar ) 3.80 Å; rNe-Ar ) 3.50 Å. c CP: counterpoise correction.d Data taken from Cybulski et al.34 e CCSD(T)
interaction energy computed with aug-cc-pV5Z supplemented with bond functions (3s3p2d2f1 g), taken from Cybulski et al.34 f Values from
experimentally derived potential energy surface from Ogilvie et al.44 (rAr-Ar ) 3.76 Å, rNe-Ar ) 3.48 Å). g Energies in kcal/mol;rO-O in water
dimer) 3.00 Å. h Data taken from Halkier et al.36 Geometry optimized at CCSD(T)/aug-cc-pVTZ level;rO-O in water dimer) 2.90 Å. i Estimated
binding energy from spectroscopic studies of Goldman et al.;37 equilibrium rO-O in water dimer) 2.95 Å.

Figure 7. Counterpoise corrected potential energy curve of water dimer
at complete basis limit.
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than OS component toward the binding energy. This trend is
observed for both non-CP and CP corrected breakdown of the
CCSD correlation energy around the equilibrium dimer separa-
tion and the difference between the SS and OS component is
even greater,∼0.5-1.0 and∼0.8-1.4 kcal/mol, respectively.
This means that even in the extreme case of MOS-MP2 (ω )
∞), twice the OS component’s contribution of the MP2 binding
energy will never be able to compensate for the missing SS
component contribution that is greater in magnitude. This
accounts for the odd behavior of the MOS-MP2 curves in
Figures 5-7.

It is also interesting to note that for the water dimer, the CP
corrected binding energies at CBS limit predicted by regular
MP2 and CCSD(T)36 are within∼0.1 kcal/mol agreement with
the experiment value37 (see Table 1). MOS-MP2, however,
underestimates the interaction energy by∼0.4 kcal/mol relative
to experiment but the good news is that it improves the SOS-
MP2 results by∼0.2 kcal/mol.

III. Fourth Order Algorithm Using Auxiliary Basis
Expansion and Laplace Transformation

The evaluation of MOS-MP2 energy can also be performed
without any fifth order step, unlike conventional MP2 theory,
similar to the SOS-MP221 algorithm but with certain modifica-
tions. Following Almlöf,38 the energy denominator in eq 6
can be eliminated via the Laplace transformation 1/x )
∫0

∞ exp(- xt) dt and the integration overt can be replaced by a
discrete quadrature (involving Q points) to get

We now introduce an auxiliary basis for the evaluation of the
two-electron integrals, which is crucial for eliminating the fifth
order step in conventional MP2 and RI-MP2.15,16Denoting the

auxiliary functions byK, L, ..., and recognizing the fact that
we can use any metric to fit the two-electron integrals irrespec-
tive of the two-electron operator,39,40 the “modified” operator
from eq 4 is used as the fitting metric to getĨ ia

jb(ω;q)in terms of
two- and three- center integrals as follows,

The use of the two-electron operatorĝω(r ) from eq 4 (denoted
by subscriptω) in the above equations will yield fittedĨ ia

jb(ω;q)
with second-order error as the same metric is used in both
integral evaluation and fitting.41 We can now use eq 10 to
rewrite eq 8 as

This working expression is now directly in terms of the auxiliary
basis, very similar to the corresponding expression in the SOS-
MP2 formalism,21 but with a modified definition forX

The implementation and the computational cost analysis of the
above are very similar to the discussion in our recent SOS-

TABLE 2: Breakdown of Contribution of MP2 Total Correlation Energy ( ∆EMP2) toward Binding Energy

∆EMP2
b ∆ECCSD

c

no CPd CPd no CPd CPd

molecule ra ∆EOS
e ∆ESS

e ∆EOS
e ∆ESS

e ∆EOS
e ∆ESS

e ∆EOS
e ∆ESS

e

Ar-Ar f 2.85 -1709.80 -1647.75 -1432.10 -1540.87 -1155.96 -1353.61 -896.68 -1256.32
3.80 -283.31 -266.86 -231.91 -243.36 -193.76 -214.93 -147.77 -196.45
4.75 -60.49 -57.94 -54.83 -55.29 -39.56 -44.92 -35.31 -43.35
5.89 -14.34 -14.31 -14.27 -14.27 -9.12 -11.01 -9.07 -10.99

Ar-Nef 3.06 -240.63 -238.35 -95.90 -165.15 -176.99 -214.46 -53.95 -161.57
3.60 -108.13 -88.56 -52.05 -59.18 -84.35 -74.98 -39.46 -55.67
4.86 -9.41 -9.23 -8.97 -9.00 -7.27 -8.16 -6.95 -8.02
5.58 -3.84 -3.83 -3.83 -3.83 -2.95 -3.40 -2.95 -3.39
6.66 -1.29 -1.29 -1.29 -1.29 -0.99 -1.14 -0.99 -1.14

H2O-H2Og 2.40 -2.40 -2.45 -0.99 -1.76 -1.67 -2.38 -0.58 -1.91
2.60 -1.89 -1.91 -0.71 -1.30 -1.29 -1.81 -0.39 -1.40
2.80 -1.38 -1.70 -0.47 -1.32 -0.70 -1.65 0.03 -1.41
3.00 -1.07 -1.23 -0.35 -0.92 -0.58 -1.17 -0.01 -0.97
3.20 -0.81 -0.89 -0.26 -0.63 -0.46 -0.81 -0.03 -0.65
3.60 -0.45 -0.47 -0.13 -0.30 -0.26 -0.39 -0.02 -0.30
4.00 -0.27 -0.26 -0.05 -0.15 -0.15 -0.20 0.00 -0.14

CH3OH-H2Oh -1.82 -1.99 -0.72 -1.51 -1.07 -1.87 -0.15 -1.56
HCN-HFh -0.70 -1.13 0.00 -0.94 -0.09 -1.12 0.54 -1.01
HF-HFh -0.07 -0.71 0.39 -0.56 -0.01 -0.80 0.40 -0.70
NH3-H2Oh -1.78 -1.99 -0.89 -1.65 -0.91 -1.84 -0.22 -1.64
NH3-NH3

h -1.42 -1.45 -0.85 -1.21 -0.86 -1.33 -0.42 -1.20

a Dimer separation (Å).b ∆EBinding ) ∆EHartree-Fock + ∆EMP2. c ∆EBinding ) ∆EHartree-Fock + ∆ECCSD. d CP: counterpoise corrected interaction energy.
e ∆EMP2 ) ∆ESame Spin (SS)+ ∆EOpposite Spin (OS); similarly for CCSD.f cc-pVTZ basis; energies inµEh. g cc-pVTZ basis; energies in mEh. h cc-pVTZ
basis; energies in mEh for MP2/6-31G* optimized structures.

EMP2
MOS(ω) ) - ∑

q

Q

∑
ia

R

∑
jb

â

Ĩ ia
jb(ω;q)Ĩ ia

jb(ω;q) (8)

Ĩ ia
jb(ω;q) ) Ĩ ia

jb(ω)wq
1/2 exp(- 1

2
∆ia

jbtq) (9)

Ĩ ia
jb(ω;q) ) ∑

K

B̃ia
K(ω;q)B̃jb

K(ω;q) (10)

B̃ia
K(ω;q) )

∑
M

∑
µν

wq
1/4{Cνa exp(- εatq/2)[Cµi exp(εitq/2)(µν|M)ω]}

(Ṽω
MK)-1/2 (11)

Ṽω
MK ) (M|K)ω (12)

EMP2
MOS ) - ∑

q

Q

∑
ia

R

∑
jb

â

∑
KL

B̃ia
K(ω;q)B̃jb

K(ω;q)B̃ia
L (ω;q)B̃jb

L (ω;q)

) - ∑
q

Q

∑
KL

X̃KL
R (ω;q)X̃KL

â (ω;q) (13)

X̃KL
R (ω;q) ) ∑

ia

R

B̃ia
K(ω;q)B̃ia

L (ω;q) (14)
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MP2 paper.21 The only extra cost arises from the evaluation of
the long-range correction term in the two and three-center
integrals,Ṽω and (µν|M)ω, which are both second-order steps.
The rest of the algorithm follows the same exact cost analysis
as SOS-MP2. The formation of theX̃ matrix in eq 14 continues
to be the dominating fourth order step. We thus expect the cost
of computing MOS-MP2 and SOS-MP2 energies to be almost
similar.

IV. Chemical Application: Study of Long-Range
Stabilization Energies in â-Sheet Oligoglycines

Horvath et al.42 recently studied the long-range interactions
in theâ-sheet structure of oligoglycines (Glym; m) 2-10) using
DFT (B3LYP) methodology. They found that long-range
interactions operating through hydrogen bonds and dipole-
dipole interactions leads to a cooperative effect that plays a
significant role in the stabilization of the secondary structure.
They determined that the addition of each glycine unit system-
atically contributes to the stabilization energy that is defined as
the energy gained from the addition of themth Gly unit to
Glym-1 relative to the energy gained from the formation of Gly3

from Gly2 and that this effect has an effective radius of about
10 glycine units. This is a suitable problem to reinvestigate as
a model application of MP2 and scaled MP2 methods, with two
purposes. The first purpose is to examine the MP2-level energies
to see to what extent long-range correlation effects contribute
to the stabilization (since dispersion effects are neglected in
functionals like B3LYP). The second purpose is to present
systematic timings for the implementations described in the
previous section, as a function of the chain length.

To study the long-range correlation effects, we redefine the
stabilization energy asδEm, the increment in energy gained by
the addition of themth glycine unit to Glym-1 relative to addition
of (m-1)th glycine unit to Glym-2; that isδEm ) ∆Em - ∆Em -
1where∆Em ) Em - Em - 1andEm is the energy of Glym. We
have investigated this system by calculating the energy incre-
ments at the HF, RI-MP2, SOS-MP2, and MOS-MP2 levels of
theory using the Dunning cc-pVXZ (X ) D, T) basis and the
corresponding auxiliary basis optimized for RI-MP2 calcula-
tions.43 The optimized geometries of the Glym were taken from
Horvath et al.42 Two-point extrapolation was carried out to
evaluateδEm at CBS for RI-MP2, MOS-MP2, and SOS-MP2.
B3LYP results (cc-pVTZ) are also included for purposes of
comparison. TheδEm is a direct quantitative measure of the
energy gained due to the cooperative long-range effects and it
decays with increasing length of the glycine chain. Figure 8
clearly reflects this idea and also indicates that correlation effects

strongly influenceδEm as can be observed by comparing the
results of Hartree-Fock and various flavors of MP2. A decay
plot of δEm (∝ 1/Reff

n ) with the effective length of Glym,
defined as the distance between the N and C termini, would
highlight the nature of interactions that are responsible for the
stabilization of the oligoglycine with increasing chain length.
Figure 9 is a plot of log(|δEm|) vs log(Reff) for the various
methods accompanied by a table indicating the corresponding
slopes obtained for each method. The predicted “n”-distance
dependence by the various methods lies between 3.5 and 3.6.
This indicates that the long-range cooperative interactions are
primarily due to electrostatic dipole-dipole interactions assisted
by the internal hydrogen bonding and to a certain extent due to
dipole-induced dipole-type interactions leading to a slightly
faster decay than the expected (1/R3) behavior. The similarity
in the decay behavior predicted by the various MP2 methods
and DFT (B3LYP) indicates that dispersion-type effects are not
important for the stabilization of this system and it is also hard
to conclude if the quality of MP2-type results is superior to
DFT (B3LYP) results or vice-versa. Among the MP2-level
methods, MOS-MP2 seems to slightly improve the SOS-MP2
description to closely mimic RI-MP2-type behavior.

Figure 10 shows the overall speed-ups of RI-MP2, SOS-MP2,
and MOS-MP2 relative to conventional MP2 for the glycine
systems, where speed-up is defined as the ratio of CPU timing
of regular MP2 to CPU timing of the method under consider-
ation. The cc-pVDZ basis and the corresponding auxiliary basis

Figure 8. Decay of stabilization energy of Glym computed at various
levels of theory. The cc-pVTZ basis set was used for HF and B3LYP
calculations. The extrapolated results at CBS are shown for RI-MP2,
SOS-MP2, and MOS-MP2.

Figure 9. Log plot of decay of stabilization energy of Glym with length
of the glycine chain. The cc-pVTZ basis set was used for HF and
B3LYP calculations. The extrapolated results at CBS are shown for
RI-MP2, SOS-MP2, and MOS-MP2. (†)δEm (∝1/Reff

n) wheren is the
slope of the best fit line for each method.

Figure 10. Speed-ups obtained relative to conventional MP2 (given
by the ratio of CPU timings of regular MP2 and indicated method) for
glycine chains (Glym, m ) 2-10) performed on IBM Power 3 p640
server (375 MHz) using cc-pVDZ basis. (†) Conventional MP2 CPU
timing (in minutes) for Glym.
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was used for all these calculations and were carried out on IBM
Power 3 p640 servers (375 MHz) with a memory limit of 1
GB. As per the discussion on computational cost in the previous
section, we can see that the speed-ups obtained by SOS-MP2
and MOS-MP2 are very similar because the cost of the
dominating step, namely, formation of theX matrix, in both
cases is roughly the same. MOS-MP2 speed-ups are slightly
lower than SOS-MP2 due to the extra cost incurred from the
formation of the “modified” two- and three-center integrals as
discussed in the previous section. This extra cost is very small
in comparison to the total CPU time. MOS-MP2 is about 5-14
times faster than the regular MP2. RI-MP2 is faster than SOS-
MP2 and MOS-MP2 for smaller Glyn (n ) 2-5). This is a result
of a contest between the costs of forming theX matrix for each
quadrature point in eq 14 for SOS-MP2 and MOS-MP2 vs the
fifth-order formation of (ia|jb) in RI-MP2. Eventually, the
overhead of repeating calculations in the Laplace-RI formalism
becomes smaller than the fifth-order step in the conventional
RI-MP2 method as the system size increases, resulting in
crossovers around roughly 400 basis functions for glycine
chains. The significance of the fourth-order scaling algorithm
is evident while comparing the SCF CPU times to the various
flavors of MP2 in Figure 10. The RI-MP2 energy evaluation
becomes more expensive than the SCF for systems with about
35-40 first row elements while this is not the case with SOS-
MP2 and MOS-MP2.

V. Conclusions

1. In this paper, we have suggested an alternative scaling of
the opposite-spin (OS) component of the MP2 correlation energy
as a workaround to the strongly damped long-range description
of our scaled opposite-spin (SOS)-MP2 method.21 This involves
the introduction of “modified” two-electron integrals that are a
linear combination of the regular Coulomb repulsion integrals
and integrals with the long-range operator, erf(ωr )/r , in the MP2
energy expression for the OS component. The long-range
integrals serve as an inter-electronic distance dependent cor-
recting factor that would help compensate for the absence of
the same-spin (SS) component and also give the full MP2
correlation at the long-range limit, by construction. We call this
scheme modified opposite-spin (MOS)-MP2 that depends on a
single parameter (ω).

2. By performing a range of chemical tests largely involving
covalent compounds, we established that the parameterω could
be tuned to improve the MP2 results for a particular property.
For instance, MOS-MP2 showed statistical improvements rela-
tive to conventional MP2 energies in barrier height estimations
that were more favorable than SCS-MP2 and SOS-MP2, whose
results, obtained with the recommended scaling factors, were
in fact degraded. Also,ω ) 0.6 au appears to be a favorable
value for MOS-MP2 that provides improved MP2 results over
a range of tested properties and remains comparable to the
quality of the SCS-MP2 and SOS-MP2 results.

3. As expected, the interaction potential energy curves
computed for a few weakly interacting dimers showed that the
scaled MP2 methods consistently underestimate the binding
energy relative to MP2. This can appear to improve the MP2
quality provided MP2 overestimates the energy relative to higher
correlation methods like CCSD(T). MOS-MP2 was found to
certainly improve the SOS-MP2 description. The extent of
improvement is limited by an interesting observation that the
contribution of the SS component can be slightly greater than
the OS contribution to the MP2 dimer binding energy (at
intermediate distances), thereby, making it impossible for MOS-

MP2, irrespective of theω parameter value, to compensate for
the missing SS component.

4. The MOS-MP2 energy can also be evaluated with a
modified fourth order scaling algorithm similar to the previously
described SOS-MP2 formalism that involves a Laplace trans-
formation of the energy denominator and use of the resolution-
of-the-identity (RI) approximation, at almost no extra cost.

5.The usefulness of MOS-MP2, both accuracy and compu-
tational, was illustrated by the study of long-range interactions
in polyglycines. It was shown that the stabilization energies
decay roughly asReff

-3.5 with the effective length of the glycine
chain as a result of the cooperative dipole-dipole interactions
aided by hydrogen-bonding and possibly, some dipole-induced
dipole-type interactions as well. The MOS-MP2 method exhibits
here that it is possible to retain the accuracy of MP2 or RI-
MP2 method (especially while computing relative energies) with
the correct physical description of long-range correlation and
at the same time, obtain computational efficiency (without
exploiting localization!). It thus seems a very suitable substitute
for our SOS-MP2 formalism and a great starting point for lower
scaling MP2 methods.
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